在线学习

在线学习机制

一个算法来从中学习的时候来模型化问题在线学习算法指的是对数据流而非离线的静态数据集的学习。许多在线网站都有持续不断的用户流,对于每一个用户,网站希望能在不将数据存储到数据库中便顺利地进行算法学习。

假使我们正在经营一家物流公司,每当一个用户询问从地点 A 至地点 B 的快递费用时,我们给用户一个报价,该用户可能选择接受(y=1)或不接受(y=0)。

现在,我们希望构建一个模型,来预测用户接受报价使用我们的物流服务的可能性。因此报价是我们的一个特征,其他特征为距离,起始地点,目标地点以及特定的用户数据。模型的输出是 p(y=1)。

在线学习的算法与随机梯度下降算法有些类似,我们对单一的实例进行学习,而非对一个提前定义的训练集进行循环。

一旦对一个数据的学习完成了,我们便可以丢弃该数据,不需要再存储它了。这种方式的好处在于,我们的算法可以很好的适应用户的倾向性,算法可以针对用户的当前行为不断地更新模型以适应该用户。

在线学习的一个优点就是,如果你有一个变化的用户群,又或者你在尝试预测的事情,在缓慢变化,就像你的用户的品味在缓慢变化,这个在线学习算法,可以慢慢地调试你所学习到的假设,将其调节更新到最新的用户行为。