平均标准化的实现细节
均值归一化
让我们来看下面的用户评分数据:
如果我们新增一个用户 Eve,并且 Eve 没有为任何电影评分,那么我们以什么为依据为 Eve 推荐电影呢?
我们首先需要对结果 Y 矩阵进行均值归一化处理,将每一个用户对某一部电影的评分减去所有 用户对该电影评分的平均值:
然后我们利用这个新的 Y 矩阵来训练算法。
如果我们要用新训练出的算法来预测评分,则需要将平均值重新加回去,预测$(\theta^{(j)})^Tx^{(i)}+ \mu_i$ ,对于 Eve,我们的新模型会认为她给每部电影的评分都是该电影的平均分。
均值归一化 用于处理新用户或者新物品冷启动问题